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Semiclassical study of electronically nonadiabatic dynamics in the
condensed-phase: Spin-boson problem with Debye spectral density
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The linearized semiclassical initial value representatfld®C-I1VR) [H. Wang, X. Sun and W. H.
Miller, J. Chem. Phys108 9726 (1998] is used to study the nonadiabatic dynamics of the
spin-boson problem, a system of two electronic states linearly coupled to an infinite bath of
harmonic oscillators. The spectral density of the bath is chosen to be of the Debye form, which is
often used to model the solution environment of a charge transfer reaction. The simulation provides
a rather complete understanding of the electronically nonadiabatic dynamics in a broad parameter
space, including coherent to incoherent transitions along all three(dresE-axis, thez-axis, and

the w¢-axig) in the complete phase diagram and the determination of rate constants in several
physically interesting regimes. Approximate analytic theories are used to compare with the
simulation results, and good agreement is found in the appropriate physical limit499@
American Institute of Physic§S0021-960609)51010-9

I. INTRODUCTION electronic and nuclear degrees of freedom. For the three
] model nonadiabatic scattering problems used by Fully

Although considerable progress has been made over theg; g rface-hopping models, it was found that LSC-IVR per-

last few years in the rigorous quantum mechanical C"’“Cl"l""]‘ormed quite well, even correctly describing Stuckelberg os-

ion of thermal (also microcanonical r nstants for ., _.. . . . .
tion of thermal (also microcanonicalrate constants fo cillations (interferences between nonadiabatic transitions

chemical reaction$these methods are at present applicablel_he LSC-IVR was also applied to the spin-boson problam

without approximation to molecular systems involving only . wo level svstem i | led t nfinite bath of
a few(3—4) atoms. The primary reason is that the finite basig €+ @ WO level system finearly coupled to an infinité bath o

used in such calculations grows exponentially as the numbdf2rmenic oscillgtoré?‘ls and it geproduced quite accurately
of degrees of freedom increases. Some kind of approximgduantum path integral resulfs? for the case of an Ohmic
tion is thus necessary in order to deal with complex molecu{With an exponential cutoffbath spectral density.
lar systems, those with many degrees of freedom. An attrac- These encouraging results demonstrate the usefulness
tive approach, the semiclassical initial value representationand feasibility of the LSC-IVR for treating complex molecu-
(SC-IVR), is now undergoing a rebirth of inter&st®in this  lar systems. Previous wdtkhas established the fact that the
regard. The SC-IVR replaces the quantum mechanical tradeSC-IVR describes the short timef order ) behavior of
in the formally exact rate expressions by a phase space aguantum time correlation functions correctly—thus accu-
erage over the initial conditions of classical trajectories, forrately describing quantum effect&inneling, etg.in a tran-
which Monte Carlo techniques can be used. The integrand afition state theory approximatiﬁ?n for reaction rate
the phase space average is oscillatory, however, and it is afbnstants—but the longer time dynamics is essentially that
active re;earch problem to develop more effici.ent algorithmgjiven by classical mechanics. The success in previous appli-
to deal with this aspect of an SC-IVR calculation. _ cations of the LSC-IVR suggests that quantum coherence
!n Ileu' of a full SC-IVR treatment, a hpeanzed approXxi- effacts, which are often quite important for a small molecule

mation to it(the _LSC'IVR) was suggested in a recent paper gas phase reaction, are quenched by the condensed phase
and found to give excellent results for a model condensed . Lo S .

. . . ._environment. Moreover, it will be shown in this paper that if
phase problem, a one-dimensional double well potential Iln;[h diabatic stat treated via the d icall i
early coupled to an infinite bath of harmonic oscillators. The 1€ nonadiabatic states are frealed via the dynamically con
approximation, which linearizes the phase difference in the'stent method suggested by McCurdy, Meyer and

H 13,14
integrand, leads to an extremely simple computational proMiller, ™" the exact quantum coherence effects for the two

cedure, one that is only slightly more expensive than a roul€vel system are fully reproduced by the LSC-IVR approxi-

tine classical molecular dynamics simulation. It has alsgnation. Bearing in mind its simplicity and ease of practical

been showlf that the LSC-IVR can be applied to electroni- implementation, the LSC-IVR is expected to be applicable to

cally nonadiabatic processes by using the Meyer—Millera wide class of complex chemical reactions.

modet***to provide a dynamically consistent treatment of  In this paper, we apply the LSC-IVR approximation to
the popular spin-boson problem, a system of two electronic

states linearly coupled to an infinite bath of harmonic oscil-

dCurrent address: Department of Chemistry, lowa State University, Ames; : H= K -
IA 50011. lators, but with a significantly different bath spectral density
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1.0

and thus presents a greater challenge for numerical simula-
tions.

Spectral densities of real chemical/biological systems are
of course much more complicated, but they should neverthe-
less have some general features in common: at small fre-
guencies, they scale linearly versugi.e., the Ohmic form

08

0.6 |

o J(w)~ nw], whereas for large frequencies they should decay
S in the form of a power lawi.e., J(w)~ 7(w:/w)", n>0].
S Despite its simple form, the Debye spectral density captures

these essential features. Theoretical/computational ap-
proaches capable of treating it are thus expected to be appli-
cable to more complex realistic spectral densities. It is our
hope, therefore, that the work presented in this paper will
permit critical examinations of several approximate analytic
0.0 - . theories for charge transfer processes and also foster future
0.0 5.0 10.0 15.0 20.0 .
O/, analytical development.
Section Il first summarizes the LSC-IVR procedure for
FIG. 1. Debye(solid line) and Ohmic(dashed ling spectral densities.  the calculation of the time correlation functions, and Sec. IlI
gives specifics of the present calculation for the spin-boson
problem. Section IV discusses the results and their compari-

than considered befor&.Specifically, the two-statédiaba- ~ SONS With approximate analytic theories, and Sec. V con-

0.2

tic) representation of the Hamiltonian is cludes.
Hg—He A
= ¢ , (113
A Hg+H, Il. SUMMARY OF THEORY

where the bath Hamiltoniaklg and the system-bath cou- In the semiclassical initial value representafiofl (SC-

pling H. are written conveniently in terms of the mass-|yR), the time evolution operator forfadimensional system
weighted coordinates and momenta as is approximated by

_ 1p2, 262 —if
HB—EJ_: 2(Pj+ 7 Qy), (1.1b e 'Ht/h’:JdpoJ ddo

90, . f 1/2
de( E) [(2i7h) }
X €SP0t ) (gl .1

whereqg;(pg,do) is the trajectory determined by initial con-

The central property of the bath is its spectral dedity ditions (po,do) and Si(po,qo) the classical action integral
along it.[The phase factoe™'™'2, where, is the Maslov

2
TS S B index, is included in Eq(2.1) as part of the pre-exponential
Jw)= 2; ; o= wj), (1.2 square rool. Thus, for the general time correlation function
j
: . . of the form
which characterizes the effect of the bath on transitions be- R i
tween the electronic statés.g., electron transfer in the con- Cag(t) =tr[AeiH“’7 ée*th/ﬁ]
densed phageln this work, the spectral density is chosen in
the so-called Debye form :J dqf dq,J quJ day(qolAlqd)
Nwew A o o
()= 2 3 X (agle™"|q")a'[Blay(ale ™" qp), (2.2
C

[Equation(1.3) is actually of Ohmic form with a Lorentzian the SC-IVR result gives the following general result:

cutoff; the name convention “Debye” is adopted here be- B _ , A
cause the condensed phase media characterized by this spec- Cas(t)=(2771) ddo | ddg | dpo | dpo’(dol Aldo)
tral density exhibits Debye dielectric relaxatith.The two

parameters which characterize the spectral density, the char- X(qy|B|ar)exp{i[ S(Po,do) — St(Po, o) 1/7}
acteristic bath frequenay. and the coupling strength, are 12 112

related to other physical quantitieswl/ 7, is the longitu- % de( ﬂ) {de{ ﬂ” ' 2.3
dinal relaxation time, and 2 is the reorganization energy in 9Po apo’

charge transfer theory. As shown in Fig. 1, the Debye spec-

- whereq,= g,(Po,do) anda; = a(P,do)-
tral density spans a much broader frequency range than the The linearized SC-IVRLSC-IVR) approximation is ob-

usual Ohmic casewith an exponential cutoff tained by making a sum and difference change of integration
Jo(w) = nwe™ /o, (1.4)  variables,
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o= 2(Po+Dy’),  APy=Po— Py, 24 plex molecular systems, such quantum interference effects in
Po= 2 (Po*Po’) Po=Po™Po 243 the long time dynamics are often quenched and the LSC-IVR
q.— L ’ — e therefore expected to provide an adequate description.
=3(qot+qo’), AQy= , (2.4b p p quate p
o= 2180™ o o= Go™ o It should also be noted that ER.6), which we refer to
and then expanding all relevant quantities to the first order iys the LSC-IVR, is the classical limit of the Wigner equiva-

the difference variableAp, and Ad: lent expression of the trace, a result obtained previously by a
— — variety of approache€:?>-28The reason that we emphasize
— %% AP % Ad that thi It arises from linearizing the SC-IVR :
O Pordo) = Tt - =0 4 2t 20 (2.53 at this result arises from linearizing the expres
py 2 9o 2 sion, Eq.(2.3), is that this suggests how one can in principle

improve the LSC-IVR, i.e., by going beyond this linearized
approximation.

So far we have assumed that the Hamiltonian of the
_ problem has a classical analog, as is the case for reactions
90(Po:G0) 99’ (Po’,0o’) 90k (2.59  oceurring on a single electronic potential surface. The spin-

Cr N — 3q—tApo 5q—tAQO
' (Po’+ o )—qt—m- 2 g 2 (2.5b

dPo apo’ dPg boson problem studied in this paper, however, iaadia-
. batic process involving two electronic states/potential energy
A%(Po, o) B 9" (Po’,90") 90 s surfaces. The LSC-IVR formalism, E@.6), is thus not di-
e PN ~ 9o (2.5d rectly applicable to the Hamiltoniafl.1) due to its dis-
cretized form. Common approximations for treating nonadia-
o, 9S(Po, o) 3S(Po,q0) batic dynamics are the time—depender_lt self-consistent field
St(Po.do) ~Si(Po’. G0’ ) = —==— -Apo pre ‘Adg  (TDSCP modef® and the surface hopping mod8IA more
Po 0 dynamically consistent treatment of electronic and nuclear
— g, — g, _ degrees of freedoms can be obtained, however, by following
=P g Apot+ Py ol Ado—Po the work of McCurdy, Meyer, and Mille***and introduc-
ing classical degrees of freedom that model the finite number
- A, (2.5¢ of discrete electronic states, the so-called Meyer—Miller

— — — — [ . (MM) classical electron analog model. In the Cartesian ver-
whered,=di(Po,do) andpy=pi(Po,do). Our abbreviated no-  gjon “of the MM-representation, the Hamiltonian for an
tation is, for example, thatdq./dp, is the matrix p.state problem is the following harmonic oscillator
(99:/9po)i i+=39; /9p; o. The integration over the differ- Hamiltonian349%31

ence variabledp, and Aqy can now be carried otitin Eq.

(2.3 to give the final result of the LSC-IVR,

"1
HOOP) = 2 5 (c+ PR = DHi
CAB(t)=(2wﬁ)‘dequ dpoA™(0o,Po)B™(a¢,P) ™, non
(2.6) +k21 lz%l Hy (XX + pepr), (2.9

where we have also dropped the “bars” oygrandqg since _ _ _
they no longer serve any purpos&?(BY) is the Wigner/ whereH, andH,, are the diagonal and off-diagonal matrix

Weyl transform? of the operatov&(l%), which is defined as elements which define the di.scr.ete_HamiItonian. Since the
total number of quanta of excitation in this systenndfiar-
Aq

w _ ip-Adli Aq . monic oscillators is a constant of the motion, thé'elec-
A (q,p)—f dage '™ <q+ 7|A|q 7> @7 tronic” states that correspond to one quantum of excitation
in one of the modes and no quanta in all the others, form a
complete set within this subspace. The “electronic” wave
functions for thesen states are thus given bynEw=1=1)

If operatorsA andB are Hermitian(i.e., they correspond to
some physical observableheir Wigner transforms are real,

A"(g,p)*=A"(q,p), B"(q,p)*=B"(q,p), 2.9

n
and since this is true for all operators of interest to us we CI)k(X):<f>1(><k)|711_|[;tk $o(X)), (2.108
drop the complex-conjugate sign in EQ.6). o

It is clear that the linearized semiclassical initial value where

representatiofLSC-IVR), Eq. (2.6), is much simpler than
the full-blown SC-IVR. The real time propagation is purely
classical, with the oscillatory part of the integrand merged
into the Wigner distribution functionghe weighting func-
tions A¥(qepo) and B%(q,,p;). The procedure is only 2
slightly more difficult than a standard classical trajectory cal- ~ $1(X)= e (2.109
culation. Its limitation, as has been discussed elsewHdse,
that quantum effects in the dynamics are accurately dek is easily verified that{H,,}, the matrix of the MM-
scribed only for short time, with the longer time dynamics Hamiltonian, Eq.(2.9) in the n-dimensional basis of Eq.
given by classical rather than quantum mechanics. For com2.10), is precisely the original diabatic electronic matrix.

1 2
bo(X)=—e 7, (2.108
a
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Applying Eg. (2.9 to Eq. (1.1) yields the continuous
MM-representation for the spin-boson problem
H(X,p,Q,P)=A(p1p2+X1Xz) +(hy+hy)Hg+ (hy—hy)H,

(2.113
where

hi=3(pi+xi-1), h=3(p3+x3-1),  (2.11b

and the wave functions for the two diabatic states are

D1(X1,%X2) = P1(X1) Po(X2),  P2(X1,X2) = bo(X1) P1(X2).
(2.12

It is then straightforward to apply the LSC-IVR formalism to

the spin-boson problem.

Wang et al. 4831
wheret, is the “plateau” time, and
Cr(t) =t E(B)eMihe1HUA], (2.18
F(B) is the Boltzmannized flux operator
E(B)=e AH2Ee AR, (2.193
O A
F=g[H,h], (2.19p

andh is the operator that projects the wave function to the
product side. Similar to the above analysis of the population-
spin correlation functiorP(t), the LSC-IVR approximation
for the flux-side correlation functio@®4(t) is given by

In this paper, two correlation functions are used to study Neo
the dynamics of the spin-boson problem. For the purpose d&ts(t) =(27fi) f onf dPy

studying the time evolution of the density matrix and its
coherent to incoherent transition, we evaluate the population-

spin correlation functiorP(t), defined a¥’

1 " ~ - . -
P(t) — Q_Btr[plleBHBelHt/ﬁo_ze*IH'[/ﬁ]

=P, 1()—Py4(1), (2.13

where
p11=|P1)(P4], (2.149
7= |1 )( D] — | Do) P, (2.14b
Qg=tre A"e]. (2.149

The assumption in evaluating(t) is that the interaction
between the system and the bath is switched dr=&, and

XJ dxof dpoF 3(X0,Po; Qo, Po) ™ (X;,p;, Q;, Py
(2.20

If the reaction is adiabati@.e., occurs on a single elec-
tronic potential surfage the thermal rate constant of Eg.
(2.17 has a similar LSC-IVR expression for the flux-side
correlation function

Cfs(t)=(2wﬁ)*ff dqof dpoF 5(do,Po) ™ (a1, Py,
(2.21)

wheref is number of degrees of freedom for the molecular
system andd,p) are the phase space variables. In previous
work,!! the projection operatdi is chosen as the step func-
tion of the reaction coordinate h="h[s(q)], wheres(q) is

the initial population is on state 1, i.e., the initial density some function of the coordinatesthat is positive(negative

matrix is

p(0)=pyieFs, (2.15

P(t) is thus unity att=0 [sinceP;._;(0)=1 andP,._(0)

on the product(reactank side of the dividing surface. It is
easy to see that the Wigner transfonif{ q;,p;) is simply the
step function of the reaction coordinate

h*(ap) =hls(ay ], (2.22

=0] and decays to zero in the presence of a finite electronic-
nuclear coupling since the two degenerate electronic stated Eq.(2.21) reduces to

have equal population at equilibriunt—¢<). It is easy to
apply the general LSC-IVR result of Eq2.6) to express
P(t) as follows:

P(t)= onf dPy

1
(27Tﬁ)N+2QJ

Xf dxof dpop1i(Xo,Po) pE(Qo,Po) o3 (Xt Py,
(2.19

wherep§(Qo,Po) is the Wigner transform oé‘ﬁ'qB, andN
the number of bath degrees of freedom.

Cia(t=(2mh) " [ dao | dneF(anpols(a]
(2.23

which is Eq.(3.14 of Ref. 11 if the factor (2r#) ' is
merged into the Wigner distribution functidﬁg(qo,po).

Ill. DETAILS OF THE CALCULATION
A. Bath discretization

To treat the continuum of harmonic bath modes we in-
troduce a density of frequencip$w) and discretize the con-

For the purpose of calculating the rate constant, Waijnyum of frequencies as follows:

found it most convenient to apply the flux correlation func-
tion formalism®23 Thus, the thermal rate constant is ex-

pressed via a flux-side correlation functiofi,
kK(T)=Q/(T) *lim Cry(t),

tﬂtp

(2.17

fwjdwp(w)Zj, i=1,...N. (3.13
0

The coupling constant; for each frequencw; is then given
by
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AX
Xt_ 7

, AX
(3.1b a"év(xt,pt)=J dAxe"pt'Ax<xt+7

0y

C-2=w-3 Jp(w))
! Yar P(wj)

The precise functional form gf(w) does not affect the final
answer if enough bath modes are included, but it does affect
the efficiency in solving the problem. This is particularly true (3.50

for the Debye spectral density since it covers such a broagor the flux-side correlation functiof(t) in Eq. (2.18,

frequency range. We have found that choosing the density o o oo X
frequencies as tLe projection operatdn is naturally defined as

2 2 2 2
=8(X2,+ p3,— x5, — P53, e~ X P (Xt P2,

N h=pas=|P,)(P,] (3.6
p(w)= ———, @2 :
2 wwmax (i.e., it projects wave functions onto statg and the result-

gives satisfactory description of the bath with 1000 bath"Y flux operator is

modes. The discrete frequencies, according to E84.a E—iTE AT=iA(D M D — DD 3
and(3.2), are [H,h] (| DD o] = [P )(P4). (3.7
5 The Wigner distribution function for the projection operator
wj:#wmax, i=1,... N, (3.3 inEq.(2.20 is simply
. . w o Ax AX| AX
and the system-bath coupling is calculated from Eg. h"(x;,p)= | dAxe '™ Xt 5 hx— =
(3.1b. The maximum frequency . is set to be 20—200;
depending on specific parameters in the simulation. In any =8(x%+p— 1 e (Gt pie— (33 3.9
case, the reorganization energy
N o There is, however, no analytic result for the Wigner
E,=279=2>, S (3.4  transform of the Boltzmannized flux operatér(8) in Eq.
i wjz (2.193. The simplest approximation, similar to the assump-
tion in defining the population-spin correlation function

was accurately reproduced. P(t), is
It should be clear that nothing in our approach takes any * ™’

explicit advantage of the fact that the bath is harmonic and IA:(IB):e_ﬁg,zlge_mq,gz[e_ﬁ,qs,zlge_ﬁ,qs,z]e_ﬁ,qB

that the coupling is lineafas is necessary, for example, in ' 3.9

quantum path integral calculatidfi€9. It would thus be

possible to carry out the present LSC-IVR calculations forwhere we denote the “system” Hamiltonian as

anharmonic baths and nonlinear coupling with essentially no
increase in effort. Hs= A(|@ (Do +|Po)(P4)), (3.10

and it is easy to verify that

B. The Wigner distribution functions e PHS2Fe  AHI2=F (3.12

The Wigner transform of the various operators defined insg that Eq(3.9) reduces to
Sec. Il can be obtained via straightforward integration, for i
which we will give the final expressions and leave the details ﬁ(l[g) —FEe AHs, (3.12
to the readefhereafteri=1). For the population-spin cor-
relation functionP(t), Eq. (2.16), the Wigner distribution Thus the Wigner distribution function fd¥(3) is
functions are

Ax Ax F5(X0,Po; Qo,Po) = F"(X0,P0) P& (Qo. Po), (3.133
p‘fl(xo,po)zf dAxe'pO'Ax< Xo+ 5| P11 X0~ 7> wherep§(Qo,Pp) is given in Eq.(3.5b, and
—Qiy2 12 — (g P2 a— (X2e+ P2 . AX| Ax
=8(Xyo+ Pro— p)e M0 Pe o', (359 F*(Xo,Po) = f dAxe'pO’Ax< Xo+ 7 F %o~ 7>
_ip.. AQl AQ
pVBV(QO’PO) = J’ dAQe IPO AQ< QO+ 7 e BHB QO_ 7> = 16A(X20p10_ X10p20)ei(xi0+ pio)e*(xgoJr pgo)
3.13
N 1 (3.130
- H cosh Bw;/2) A better approximation is based on the split-operator ap-
. proach of the Boltzmann operator
2tanf‘(,8a)1/2) PJO 1 ~ ~ ~ ~
xex;{ - | 27 E“’J'ZQJ'ZO ; e PH2— g~ PHd4g= Hed2g = HJ4 (3.143

(3.5b where we have denoted
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Hg—H.

|:|Bc:[ 0
=(Hg—H¢)| @1 )(Pq]|+ (Hg+He) | Po)(Dyl.
(3.14b

0
Hg+H.

After some manipulations, we arrive at the final form of the
Wigner distribution function folF (3)

F}!(Xo,po;Qo, Po)
= G"(X0,P0;Q0,P0)Z"(X0,P0; Q0. Po).

G"(Xo,Po: Qo,Pg) = 16A e~ Xio* Plo* X50* Po0

<11

(3.153

e—tanl‘(uj)(szo+ wszjzo)/wj'

i coshiy)
(3.15H
Z"(X0,P0: Qo,Po)
=A"(Pp)| sin T BY(Xg,po)
BA w w w
—cosh —- C"(X0,Po) |+ D" (Po) E™(X0,P0),
(3.150
AY(Py) = — [ H e[cjz/(zwjz)][ﬁ—z tanhuj)/wj]]
i
1 2¢C;
i _ - 1|3 p.

><sm{§j: cosu) o2 F’,o}, (3.150
B"(X0,Po) = 3 (Xio+ PIot X5+ P30~ 1), (3.15¢
C"(X0,Po) =X10%20F P10P20. (3.159
DW(PO):[H e[cj2/(2wj2)][/32tanf(uj)/wj]}

i
1 ZC]

X°°S{? cosfiuy) :P} 134
E"(X0,P0) = X20P10~ X10P20, (3.15h
and
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C. Equations of motion

Hamilton's equations of motion for the MM-
representation of the spin-boson problem, E2.11), are

straightforward

) JH

X;=——=p1(Hg—H¢) +p2A, (3.163
Py

. oH

p1:_(9_X1:_X1(HB_Hc)_X2A, (3.16h
oH

Xo=——=p1A+pa(Hg+H,), (3.160
P2

. oH

pzz_ﬂ_xzz_XlA_XZ(HB"i'Hc)a (3.160

. H

) oH 2

Unfortunately, one encounters numerical problems when di-
rectly integrating the above equations because the tégm
=3;5(P{+ Q) has a large magnitude in E¢S8.163—
(3.16d, and this gives rise to rapid changes in the variables
{X1,P1,X2,po}versus time. As a result, EgR8.16) are a stiff

set of equations.

This problem can be resolved by changing the integra-
tion variables from{x,,p1,X2,ps} to {h;+hy,h;—h,,pox;
—Ppi1X2,P1P2t+ XX}, Equations(3.16a)—(3.169 are then
replaced by the following equivalent set of equations:

d
gi(hith2) =0, (3.173

d
a(hl_h2)=2A(p2X1_plxz), (3.17b

d
&(ple_ P1Xz)=—2A(h;—hy) —2H(p1p2+X1X2),
(3.179

d
a(p1p2+x1xz):ZHc(p2X1_p1X2)- (3.170

Equations(3.17) not only solve the stiff equation problem
(the termHg is no longer presenyt! but also closely relate

the integration variables to physical quantitieg=+h, rep-
resents the total population in the two states, which is obvi-

It should be emphasized that the Wigner distribution0usly a conserved quantifyas seen from Eq(3.173]; h;

function for the Boltzmannized flux operator,
F3(X0,P0;Qo,Po), is only used for weighting initial condi-
tions of classical trajectories; the real time dynamics is stil
solved with the full Hamiltonian. The above approximations
for F‘g(xo,po;Qo,Po) are satisfactory for cases considered in
this paper. There are of course more accurate metfeds
see Ref. 3bof evaluatinng’(xo,po;QO,PO) or equivalently,
the overall partition function for the spin-boson system,
which should be incorporated for calculations that conside
lower temperatures than treated herein.

—h, represents population difference between state 1 and 2;
poX1— P1X, relates to the flux from one state to another; and
[P1P2+X1X, represents the off-diagonal terms in the MM-
Hamiltonian.

IV. RESULTS AND DISCUSSION

Before considering application of the LSC-IVR to the
spin-boson problem of Eq1.1), it is of pedagogical interest
to show how it applies to the isolated two level system,
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: (4.7

|:|€A
A —€

we thus remove the bath from the spin-boson Hamiltonian,
Eq. (1.1), and sete# 0 as the bias to differentiate the energy

levels of the two states. This is a similar case to the previous
study?! of a one-dimensional double well problem, where the
correlation functions display coherent oscillations betweenf 06|

reactants and products.
The Meyer—Miller representation for E¢.1) is

4.2

€
H= S (Pf+Xi—p3—x3) + A(Pap2+XaXo),

and we consider, for example, the population-spin correla-

tion function

P(t) =t p1:e7 5,0 1M1, 4.3
via the LSC-IVR approximation,
P(t):LJ Xmof dplof dXzof dp2o
(2m)?
X p11(X10,P10,X20, P20 07 (X1t P1t  Xat ,P2t)s (4.4

wherep}) ando are given in Eqs(3.59 and(3.50, respec-
tively. Hamilton’s equations of motion for E¢4.2) are solv-
able:

si 2+ A%
X1 =COS V€ + A%t) X o+ %(pmﬁ P20A),
(4.59
sin(Ve2+ A2t
P1=Ccog Ve +At)pyg— n(\/:TA )(X106+X20A)
(4.5b
sin( e+ A%t
th:COS(\/€2+A2t)X20+%(_DZOG‘FPNA),
(4.50
Jes+ At
=cog e +A2t)p20 Slm\/—z+—z )(XzoE X104).
(4.50

Using Egs(4.5), the phase space integration in E4.4) can
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FIG. 2. Coherent—incoherent transition ¥s P(t) for BA=0.1 andw./A
=0.25.

constant can be defined. It is possible that other parameters
also play important roles in the coherent to incoherent tran-
sition. Below, we will discuss such behavior in the complete
parameter space.

A. Coherent to incoherent transitions

1. Along the m-axis

This is the most obvious axis for observing the transition
from coherent to incoherent behavior. The parameterea-
sures the coupling strength between the bath and the two
level system(also recall that % is the reorganization en-
ergy). Therefore asy increases, the energy exchange be-
tween the system and the bath becomes more efficient so that
the bath more effectively damps the coherent motion of the
two level system. Figure 2 shows the population-spin corre-
lation function, P(t), for the parameterssA=0.1 and
w./A=0.25. As seen clearly in the figure, there are strong
coherent features for the weak coupling casepth =0.5,
less so for a stronger coupling= 1. It reaches the transition
boundary betweem/A=2 and »/A=5, and one sees no
remaining coherent features for the strong coupling case of
n/A=10. It should be pointed out that althougfiA =10
displays totally incoherent dynamics, it does not give the

now be carried out over the initial condition variables golden rule rate constant for the parameters used in Fig. 2.

(X10,P10:X20,P20) 1O give
2A%sir?(\e*+ A%t)

e+ A2

P(t)=1- , (4.9

which is recognized to be the exact quantum mechanical r

sult.

Rather, it gives a rate that agrees with Zusman’s solvent
dynamical modef* Such results will be discussed more fully
below.

&2 Along the T-axis

This is also an interesting parameter for observing the

Equation(4.6) is the result of the spin-boson problem coherent to incoherent transition. At low temperature, the

[Eq. (1.1)] when the system-bath couplirid. is zero(with
the trivial modificatione=0).

total number of states accessible for the bath is limited and

In this case, the population- so is energy exchange between the system and the bath. As

spin correlation functiofP(t) exhibits pure coherent motions the temperature increases, more bath states participate in the
between the two states, and the rate constant from state 1 émergy transfer process, which tends to destroy the coherent

2 is not defined. As the coupling increas&Xt) will un-

motion of the two level system. Figure 3 showgt) for

dergo a coherent to incoherent transition and may eventuallgifferent temperaturefhere we usgA as a measure of tem-
reach the form of an exponential decay for which a rateperatur¢. The other parameters arg/A=2.0 and w./A
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12

‘ increased to 0.1, and has almost disappeared «fpfA
— PBA=0S5 =0.25. Forw./A=4, P(t) exhibits complete incoherent dy-

N pa=0.2 ] namics.
—-—-- BA=0.06 It is more illustrative to look at the flux-side correlation

function, Cis(t), for the above cases, especially from
w:./A=0.1 to w./A=1 where the coherent to incoherent
transition is not so obvious. Figuréd) showsC;4(t) for the
casew./A=0.1 in Fig. 4.(The correlation function was
multiplied by the factoiQ,efEa/A, where

08

0.4 | 2
- B [on
- - i
Qr=tr[|®)(Py[e”AHe HC)]:QBGXF{BZ —2]
02| I 20j
(4.79
00,5 o5 m 5 20 is the reactant’s partition function witg the partition func-
A/ tion for the harmonic bath, and
FIG. 3. Coherent—incoherent transition s P(t) for »/A=0.1 and 02
wo/A=0.25. B I
; 20?2 E., (4.7H

=0.25. At low temperatureBA = 0.5, there is strong coher- is the usual activation energy in the infinite bath limie-
ent character ifP(t). The coherent component becomes lesscauseCi(t) is an odd function of time, it starts from zero at
for a higher temperature @A =0.2, and there is barely any t=0, and quickly reaches its maximum by a time ef3%
coherence left for the still higher temperature@f=0.06.  (BA in terms of the units heje” After that, it is seen that

At the highest temperature in Fig. BA=0.02, P(t) dis- the flux displays sizable coherent recrossings of the dividing

plays totally incoherent dynamics. surface. One can see from the second to the third peak that
the period of oscillation agrees approximately with the Rabi
period in Eq.(4.6). On the other hand, Fig.(®) shows

3. Along the _-axis Cts(t) for a larger characteristic frequency, i.e. thg/A

=0.25 case in Fig. 4, and it is seen that the coherence feature

This is a less obvious axis for observing the coherent tq

incoherent transition, but the most interesting one. For rea® mostly quenched by the bath. At longer timBy(t)

sons which become clear below, the-axis covers several reaches a plateau corresponding to a rate constant that is

important dynamic aspects and is crucial for both identifyings'gmﬁcamIy smli'ille_trh t;an the, goldc%wl-égle predlctrl]on, but
the coherent—incoherent transition and calculating the rat grees very well wi usman's mo igure c) shows

constant. Figure 4 showB(t) at BA=0.5 and#/A=20.0, ts(t) for an even largew, (wc/A=1), and here itis clear
for severalw.'s. The trend is very clear: for the smallest tr}e::]thg_ q;(;pamlcsfls mco(rjleiaent. {Agam, :hetre are recr.(t)r?szmgs
in the figure,w./A=0.025, P(t) shows strongly coherent 0 ? 'V'd'g%?”[ acde afnth N rlge COTS an :T\tnge-es I\INI Fi us-
character. The coherence becomes less prominest s is man's mo Instead ot the golden-rule resuit. Finally, F1g.
5(d) showsCi4(t) for the largest characteristic frequency in
Fig. 4, o./A=4, and it is a classic example of a “direct”
reactiori® where no hint of recrossing is present. Naturally,
the rate constant in this case agrees very well with the

12

— ©/A=0.025

e ) JA=0.1 golden-rule prediction.
——— 0/A=0.25 Thus, the physics along the.-axis is as follows: when

w, Starts from zero and gradually increases, the relaxation of
the bath is extremely slow, unable to destroy the coherent
motion of the two level system. As. becomes larger, the
response of bath becomes faster so that the bath gradually
participates in the decoherence mechanism. The first inco-
herence regime appears, however, still at quite srgll
This is the regime where the collective bath motion is slower
or at least at the same timescale of the two level system. As
a result, the slow diffusive motion of the bath manifest itself
into the overall dynamics, a phenomenon observed from
experiment’ and theoretically predicted by Zusman nearly
%40 05 1.0 15 20  two decades ag¥. When w, is large enough, the timescale
ta/n separation between the bath and the two level system is large
FIG. 4. Coherent—incoherent transition wg: P(t) for 7/A=20 andgA enough for the dynamics to become transition state theory-
=0.5. like and well described by the golden-rule.
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FIG. 5. Flux-side correlation functio®;4(t) for SA=0.5 and »/A=20, and the characteristic frequeney, is: (8) w./A=0.1; (b) w./A=0.25; (c)
w./A=1; and(d) o, /A=4.

4. Comparison with the noninteracting-blip NIBA will fail to describe recrossing dynamics from any
approximation other causes.

The so-called noninteracting-blip  approximation Figure 6 compares LSC-IVR results with NIBA for three
(NIBA)Y is a useful approximation in studying the spin- different couplings ). The other two parameters used in
boson problem. It gives the correct limit for both the extremethe calculation arggA =0.5 andw./A=10. For the smallest
weak coupling regimecoherence and the golden-rule re- coupling in the figure;7/A=0.1, both LSC-IVR and NIBA
gime (incoherenck Based on this, it is arguétithat (for the ~ Predict coherent dynamics, and they agree well with each
Ohmic spectral density in particulaNIBA may give quali-  other. On the other hand, both LSC-IVR and NIBA predict
tatively correct description of spin-boson dynamics over a@ncoherent dynamics for the largest coupling in Fig.z8A
broad parameter space. For an Ohmic spectral density witif 20, and the fitted rates agree well with the golden-rule
an exponential cutoff, it is indeed found from Monte Carlo prediction. The problem occurs for the intermediate cou-
path integral simulatio8 and LSC-IVR calculatiotf that ~ pling, »/A=1, where NIBA predicts coherent dynamics but
the NIBA gives correct results for several choices of paramLSC-IVR predicts, after a short transient time, incoherent
eters and predicts correctly the coherent—incoherent transielaxation.
tion. Again, we seek the help from the flux-side correlation

A different situation is expected for the Debye spectralfunction, Cs¢(t). Figure 7 show€(t) for the /A=1 case
density due to its much broader spectral range. The abowvef Fig. 6, and it becomes immediately apparent that there is
two limiting cases should still hold, but the transition regime significant recrossing dynami¢s fact it is in the so-called
may be more complicated. For example, it is known thatenergy-diffusion regime by tA=BA C;4(t) has reached its
NIBA, bearing the spirit of the first-order perturbation maximum, but the coupling to the bath is not strong enough
theory®® cannot describe Zusman-type dynamics of Fig. 4to prevent flux from recrossing the dividing surface. At
and Fig. §b) and Hc). It is also reasonable to believe that longer time, a plateau is reached that gives a rate constant
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1.2 ‘ ‘ ‘ venient to use the flux correlation function formalism, Egs.
”‘ﬁi@g_goonmmqmmmmm " (2.17—(2.20, to obtain the rate constant directly. The corre-
08 RN oooo] sponding language for a well-defined rate constant is that the
W, N A flux-side correlation functiorC;¢(t) can reach a stable pla-
ol “.F\\ s N AA j teau in the long time limit, and the rate is given simply as
A‘p M o I_ D_D_DDD\ A 7 Cs(ty)
e N A _ Cisllp
& o0 )\ZD A ™™ “D=m (4.8
\e A A\ 7 wheret, is the plateau time an@,(T) is the reactant’s par-
04 A%, ot . Nl 1 tition function defined in Eq(4.7). From the point of view of
A'\\ s s 0 the flux correlation function, there are two major classes
08 | . ’ 2 2an® 1 where one can identify a rate constant: the “direct” reaction
as and the “indirect” reaction. For the former clas§;(t)
2 ‘ ‘ ‘ reaches its plateau in a timeB# (or BA in the units herg
0.0 05 t&/(;n 18 20 and stays at that plateau; whereas for the latter clag$t)

still reaches its maximum at time- 8%, may or may not

FIG. 6. Comparison of the LSC-IVR simulation with the NIBA result: The have a plateau, and then decreases to a smaller value. It
solid line and the open circle correspond to the LSC-IVR and NIBA resultmight rise and decrease again several times, before finally
for »/A=20, respectively; the dashed line and the square correspond to the hi bl | Both of th ' | h
LSC-IVR and NIBA result forp/A=1, respectively; the dot-dashed line reaching a stable plateau. Both of these two CaSS(i?l ave
and the triangle correspond to the LSC-IVR and NIBA result fga  been observed before for small gas-phase reactfoiis;
=0.1, respectively. The other parameters used in the calculatio&re and it is known that for the “direct” reaction case quantum
=0.5 andw:/A=10. transition state theory is a very good approximation for the
rate constant.

For nonadiabatic transitions in the spin-boson system,
the corresponding quantum transition state theory is the
golden-rule*?-44

significantly below the golden-rule prediction, a typical re-
sult for the energy-diffusion regime. NIBA, on the other
hand, always predicts the golden-rule réfehe rate exists

and cannot describe such recrossing dynamics. One expects " 4 (o
that for the spin-boson system with a more complicated spec-  k,= BAZJ dRex;{ - —f dw
tral density, such as those that exhibit glassy behavior, NIBA - 0

would be an even worse approximation in the coherent—

incoherent transition regime. XJ(w) coshfw/2) — coshiRfw)

Y sinh(Bw/2)

With the saddle point approximation for the integral over
The rate constant is well-defined only if the population-R,**~*°the expression takes the following simpler form:
spin correlation functionP(t) exhibits exponential relax-

ation. One can fit it to an exponential foren ¢! to obtain the
rate constantk (here k=a/2), as have been done
previously?>!? In practice, however, we found it more con-

4.9

B. The rate constant calculation

A2

k,=
S 2r5dw[I(w)/sinh Bwl2)]

. (4.10

4 ro J(w)
xexp{ - —f dw—ztanr(ﬁwm)

In the high temperaturésmall 8) and/or small frequency
limit, the further approximations tanBw/4)=pBw/4 and
sinh(Bw/2)=Bwl/2 can be made so that one obtains the
“classical” golden-rule formula

[7B
kg.cL=A2 IE° BEa, (4.113

a

where the activation energy is given by

1> Jw)
E;=—| do—. (4.11b
mJo w
%0 05 10 15 20 For the Debye spectral densitl, is equal ton/2 as men-
tA/n tioned in Eq.(4.7b.
FIG. 7. Flux-side correlation functioBi;(t) for BA=0.5 andn/A=1, and The only existing theoretical model that accounts for re-

we/A=10. crossing dynamics is Zusman’s solvent dynamic mdtiél,
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LSC-IVR simulation.

where the diffusive motion of the bath is taken into account”0-8: versus the scaled relaxation timgA=A/w.. The

as a dynamical correction and the rate constant is given asSOI!d Ilqe is from Zusman’s model, E¢4.12, Wher.eas the
solid circles are results from the LSC-IVR simulation.

A2 ’377-/4Eae_ﬁEa 412 Again, they are in excellent agreement in this limiting case.
C 1+A%7 (wlEy) | '

andr = 1/w. for the Debye spectral density. It is easy to see
that in the limit of the extreme fast bath motion,/A<1,
the Zusman rate in Eq4.12 reduces to the “classical”
golden-rule rate in Eq(4.118. Therefore, the limitation of
Zusman’s model should be the same as the ‘“classical’

enstic irequencyw, . ough the smalto, requirements . giant is not defined. As increases, the coupling of the

naturally satisfied for most of the Zusman-type Processeyyath will eventually damp the coherent motion of the two

:zaliJrg?:emust be taken in justifying the high temperature "®level system. Although there is still significant recrossing

. . flux, C¢4(t) will reach a stable plateau in a longer time. Such
Based on the above analysis, we summarize the LSC- i<(1) P g

. . . a regime is called the energy-diffusion regime because en-
IVR simulation results for the three sub-sections. ergy exchange is the dominant factor. The rate constant in

o this regime is smaller than the transition state the@igT)

1. The golden-rule rate limit prediction. As» becomes even larger, the recrossing flux

This limit occurs when the coupling and characteristic becomes less and the rate begins to approach the TST limit
frequencyw, are sufficiently large. The temperature should (the so-called spatial diffusion regimeHowever, 7 is also
not be too low, i.e., the perturbation parameééxr should be  proportional to the activation energy so the TST rate constant
sufficiently smaller than 1. On the other hand, to ensure théends to decrease with increase #n Naturally, there is a
process is an activated one, the exponential paranggr  “turnover” in the absolute rate constant along theaxis.
should be sufficiently large. Figure 8 is an Arrhenius plot of  Figure 10 shows the calculated rate constants versus
the calculated thermal rate constants in comparison with théor BA=0.5 andw./A=4. The turnover character is appar-
golden-rule results, and they are in very good agreement. Agnt. There is no analytic theory at present that explains such
mentioned above, this agreement is expected for this limitindgeature for the nonadiabatic transition process in the con-

YA

3. The “turnover” curve

This is similar to the Kramers turnover phenomenon ob-
served for a one-dimensional double well linearly coupled to
an infinite bath of harmonic oscillators. The parameter that
determines the turnover is the coupling strengthWhen »
is extremely small, the flux correlation function displays co-

case. densed phase. Our feeling is that this theoretical approach
should be similar to the quantum turnover théérhat has
2. The Zusman rate limit been proven successful in treating the double well/infinite

As discussed earlier, the Zusman's model applies Whelrt1)ath problem, and should reduce to the golden-rule formula

the collective bath motion is slow compared with the motionIn the spatial diffusion regime.
of the two level system. The other requirements are simila
to those in the golden-rule limit, i.e., the temperature shoul
be high enough and the process should be an activated one. In this paper, a linearized approximation to the semiclas-
Figure 9 shows the rate constants stA=20 and BA sical initial value representatiqgh SC-IVR) has been used to

. CONCLUDING REMARKS
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020 - coherent—incoherent transition for thdevel system and a
small possibility for the golden-rule formula to describe the
rate accurately.
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